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ABSTRACT

This work aims to apply artificial neural network (ANN) models for the analysis of properties of a
unidirectional composite reinforced with natural fibers, thus providing theoretical values of me-
chanical properties such as the transverse elasticity modulus of the composite. Furthermore,
with these obtained values, establishing a relationship with the Halpin-Tsai model, through the
correlation coefficient and mean square error. To do so, it was necessary to use a dataset
that was divided into two parts, one part being used for training and the other for ANN testing.
For this work, three different network architectures were developed: one with only two inputs,
another with three inputs, and the last consisting of a hybrid architecture that combines an ANN
with a model developed by Halpin-Tsai. After training the algorithms, the results demonstrate
that the use of ANN is quite promising, as the results of the hybrid model (ANN/Halpin-Tsai)
show higher correlation coefficient values and lower mean square error values. While the ANN
with two inputs failed in modeling, the one with three inputs showed positive results compared
to the Halpin-Tsai model. The effectiveness of the hybrid model lies in its ability to generalize,
combining the ANN and the Halpin-Tsai data.

Keywords: Natural Fibers, Unidirectional Composites, Transverse Elasticity Modulus, Halpin-
Tsai Model, Artificial Neural Network (ANN).
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CHAPTER 1

Introduction

In the field of mechanical engineering, the need to improve materials with properties aimed at
reducing environmental impact has become increasingly essential, allowing them to meet new
requirements for industrial applications.

In this context, the incorporation of natural fibers into unidirectional composites has gained
prominence, offering not only a sustainable alternative, but also improving properties such as
tensile strength and stiffness, compared to conventional composites made solely with synthetic
fibers. This approach shows potential to meet industry demands by providing more ecologically
sustainable solutions.

Furthermore, unidirectional composites stand out as a class of materials capable of achieving
such objectives and have been widely used in industries due to their ability to satisfy these
needs. These materials exhibit complex mechanical properties, often requiring a level of in-
vestment that may not align with the cost-benefit ratio of the experiments needed to obtain the
desired information (Lorandi, Cioffi, & Ornaghi Jr, 2016).

However, these mechanical properties are essential for failure analysis and the design of struc-
tural components. Thus, several mathematical models have been proposed to describe the
behavior of these materials, aiming to reduce the number of required tests, predict results, and
ultimately lower project costs (Callister & Rethwisch, 2020).

The mathematical models used to analyze the mechanical behavior of unidirectional compo-
sites based on their components are known as micromechanical models. These models seek
to obtain the properties of the composite based on the individual properties of its components
and the volume fractions of each element (Vasiliev & Morozov, 2001).

In the literature, there are several mathematical, empirical, and semi-empirical models used
to estimate the elastic properties of composite materials based on the individual properties of
their components. The simplest of these is known as the “rule of mixtures”. One widely used
model today is the Halpin-Tsai model (Vasiliev & Morozov, 2001).
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INTRODUCTION

These models provide a simplified approach for predicting elastic properties, taking into ac-
count factors such as the volume fraction of the components, their intrinsic properties, and the
interactions between them.

The Artificial Neural Network (ANN) is a modern computational tool widely adopted in vari-
ous engineering fields, including mechanical engineering. These networks are inspired by the
functioning of the human brain and rely on mathematical models that enable computational le-
arning from a set of predefined data, acquiring knowledge through experience in computational
training (Haykin, 2001).

These basic units, called neurons or processors, are interconnected, forming a complex network
of connections, hence the name “neural networks”. This network structure makes it possible to
perform a wide range of tasks, being especially effective as a universal function approximator
(Júnior, Neto, & de Aquino, 2005).

In the field of composite materials, neural networks are already being applied, showing promi-
sing results.

1.1 Research Problem

Laboratory experiments aimed at investigating the mechanical behavior of unidirectional com-
posite materials with natural fibers face significant challenges due to the low isotropic level
and high hydrophilic capacity of natural fibers, in addition to the complexities at the fiber-matrix
interface.

How can the mechanical behavior of unidirectional composite materials with natural fibers be
anticipated, considering the challenges associated with the fibers’ low isotropic level, high hy-
drophilic capacity, and the complexities at the fiber-matrix interface?

1.2 Objectives

General Objective

Apply ANN models to analyze the properties of a unidirectional composite reinforced with na-
tural fibers, in order to provide theoretical values for mechanical properties, such as the trans-
verse modulus of elasticity of the composite. Additionally, establish a relationship with the
Halpin-Tsai model by using the correlation coefficient (r) and the Mean Squared Error (MSE)
to compare the values obtained.

2
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Specific Objectives

• Develop a model for the transverse modulus of elasticity based on the mechanical beha-
vior of unidirectional structural composite materials reinforced with natural fibers, using
three distinct architectures.

• Apply analytical models to analyze mechanical properties, with a focus on the Halpin-Tsai
model.

• Evaluate the results obtained from the analytical models and ANN in order to validate
the algorithm’s effectiveness. The comparative analysis will be conducted both qualitati-
vely, through graphical representation, and quantitatively, using MSE and the correlation
coefficient (r).

1.3 Justification

The growing demand for innovations in mechanical engineering and the constant improvement
of unidirectional composite materials require efficient approaches to predict mechanical pro-
perties accurately and cost-effectively. In this context, the use of ANN appears as a promising
strategy, taking advantage of the ability of these models to learn complex patterns from data-
sets (Diniz et al., 2016).

The need to predict mechanical properties in unidirectional composites drives the use of ANN,
which offer accuracy and efficiency even in complex scenarios. Furthermore, the integration of
natural fibers promotes environmental sustainability in the composite materials industry.

Unidirectional composites present specific challenges, such as the need to predict complex
mechanical properties, including the transverse modulus of elasticity (E2), in scenarios where
traditional methods can be expensive and require a significant amount of experimental tests.
ANN, by simulating human learning, offers the advantage of generalization and prediction ca-
pacity, even in situations where the relationships between variables are intricate (Watt, Davies,
& O’Connell, 1976).

The application of ANN in the micromechanics of unidirectional composites provides an oppor-
tunity for advancement in computational modeling, allowing the simplification of processes and
reducing dependence on traditional models, such as the mixture rule and the Halpin-Tsai mo-
del. Furthermore, the flexibility inherent to ANN allows the exploration of different architectures
and training algorithms, adapting to the specificities of unidirectional composites (Goleman,
2017).
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1.4 Motivation

The use of natural fibers in unidirectional composites not only presents mechanical benefits,
but also brings significant considerations from an ecological point of view. Natural fibers are re-
newable, biodegradable resources and generally have a lower environmental impact compared
to traditional synthetic fibers (Romão, 2003).

The need to anticipate the mechanical behavior of these materials, such as the transverse
modulus of elasticity (E2), is crucial to optimize industrial projects and processes. The diffi-
culty lies not only in the diversity and specificity of mechanical properties, but also in the high
demand for resources associated with traditional experimentation.

Neural Network (NN)’s approach offers a promising perspective, inspired by human learning,
to overcome these challenges. The ability of these models to learn patterns from complex data
allows for more accurate prediction, reducing dependence on a purely experimental approach.
By simulating the cognitive process, ANN can capture non-linear and complex relationships,
offering a valuable alternative for modeling unidirectional composites.

The flexibility of ANN, combined with its generalization capacity, offers a unique opportunity to
optimize the analysis of unidirectional composites, aligning with the growing demands for more
agile and effective methods in modern mechanical engineering.

Therefore, by including unidirectional composites reinforced with natural fibers, not only does
it advance the efficiency and precision of mechanical engineering, but it also contributes to
mitigating environmental impacts and promoting more sustainable practices in industry.

1.5 Questions and hypotheses

Based on the ANN responsible for predicting the transversal modulus of elasticity of unidirecti-
onal composites reinforced with natural fibers, some questions can be raised:

• How can ANN be applied to predict the mechanical behavior of unidirectional composites
with natural fibers, overcoming the challenges related to the low isotropic level and high
hydrophilic capacity of these fibers?

• What are the specific characteristics of neural architectures that best adapt to the analysis
of unidirectional composites, considering the simplification of the model through a reduced
number of input parameters?

To support an argument on these issues, the following hypotheses are outlined:
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• The use of properly trained ANN can overcome the difficulties related to the low isotropic
level and high hydrophilic capacity of natural fibers, providing a more accurate prediction
of the mechanical behavior of unidirectional composites;

• Simplified neural architectures, which seek to adapt to micromechanical principles, with a
reduced number of input parameters, will present satisfactory performance in the predic-
tion of mechanical properties, equivalent to conventional models, such as the Halpin-Tsai
model;

1.6 Delimitation of the study

This study will be restricted to the application of ANN in the prediction of the transverse modu-
lus of elasticity (E2) in unidirectional composites. The delimitation includes the specific analysis
of these materials, considering their unidirectional fiber orientation, and the emphasis will be
on the mechanical properties. The delimitation excludes other types of materials, such as bidi-
rectional, multidirectional and randomly oriented composites. The comparative evaluation will
be performed quantitatively, using metrics such as MSE and the correlation coefficient (r), and
qualitatively, through graphs. This study focuses on the practical application of ANN in mecha-
nical engineering, specifically to predict mechanical properties in unidirectional composites.

5
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1.7 Relevance of the study

This study seeks to explore and improve methods for predicting mechanical properties in unidi-
rectional composites, with the aim of simplifying these processes, allowing for a more accurate
and cost-effective prediction of the transverse modulus of elasticity (E2) through the use of NN.
Furthermore, by considering unidirectional composites reinforced with natural fibers, the study
expands the applicability of the techniques developed to more sustainable materials with lower
environmental impact.

Reducing experimental costs is a significant consideration, as the study proposes an efficient
alternative to the traditional approach, reducing the need for experimental testing, especially
in scenarios where conventional methods may be economically unfeasible. By incorporating
unidirectional composites reinforced with natural fibers, the research can also contribute to
reducing costs associated with the acquisition and processing of materials, promoting more
sustainable and economically viable practices.

This approach has the potential to generate knowledge directly applicable to structural projects,
while promoting the adoption of more sustainable materials in the industry.

The potential for generalization is a strategic dimension, since the results obtained are not
limited to unidirectional composites, and can be extended to a broader application of ANN in
other contexts in materials engineering.
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CHAPTER 2

Composite Materials

Composite materials are materials made by combining two or more components with different
properties, usually a matrix material and a reinforcing material. This combination results in a
material that has superior properties to those of the individual materials, making them widely
used in various industries, including aerospace, automotive, construction, sports, and electro-
nics, among others (Callister & Rethwisch, 2020).

They have properties that could hardly be achieved by conventional materials, being com-
posed of metals, ceramics and polymers. This diversity of materials allows them to achieve
performance levels that no individual material could offer, making them ideal for meeting the
demands of these applications mentioned.

2.1 Classification of Composite Materials

Composite materials have characteristics that are very different from other types of materials,
and these characteristics are correlated to their composition, orientation of the reinforcing fibers
and their geometry (Callister & Rethwisch, 2020).

Reinforcements are the components that provide greater strength to composites. They are
generally referred to as the dispersed phase and play a fundamental role in transporting the
load in composite materials, providing greater strength, modulus and elasticity. Synthetic fibers
are the most common type of reinforcement and are mostly produced from petroleum-derived
resins. Some of the main fibers used as reinforcement in composite materials are: carbon,
polyethylene, polypropylene, glass, nylon and aramid (Oliveira, 2018).

7



COMPOSITE MATERIALS

Microcomposite materials are subdivided into four categories: fibrous composite materials,
particulate composite materials, laminated composite materials and hybrid composite materi-
als. However, for the purposes of this work, only fibrous composite materials are relevant.

In Figure 2.1, an example of a multilayer composite with multiple orientations of the reinforcing
fibers can be seen.

Figura 2.1: Example of Multi-Layer Composite.

Textile Tailoring

Short Fiber Throw

Direction (-45 degrees)

Direction (45 degrees)

Transverse Orientation (90°)

Longitudinal Orientation (0°)

Source: Prepared by the author (2024).

Fibrous Composite Materials

The fibrous reinforcement of a composite material consists of thousands of individual filaments
with very small diameters of the order of micrometers, dispersed in the polymer matrix. Typi-
cally, the mechanical properties of the fibers are much higher than those of the polymer they
reinforce (Bank, 2006).

In addition to these requirements, which are demanded of the matrices, the fibers must also
have characteristics that allow them to reinforce the polymers effectively (Romão, 2003).

In addition to the requirements mentioned above, there are other factors related to the nature of
the reinforcement that influence the final properties of a composite. The quantity of fibers, their
orientation and their length are characteristics that predominantly influence the characteristics
of fiber-reinforced polymers, so much so that the composites can be classified according to the
scheme in Figure 2.2.

8
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Figura 2.2: Possible ways of using fibers in the manufacture of composite materials.

Bidirectional Fabric

Unidirectional Fabric Blanket with short threads

Blanket with continuous 
threads

Source: Adapted from Kaw (2005).

2.2 Natural fibers

Since the dawn of humanity, natural fibers have been used to improve the properties of ma-
terials. As an example of the first fibers of natural origin used, linen has a history of over 8
thousand years, having originated in Egypt, on the banks of the Nile, and in Crimea, as confir-
med by archaeological findings. Cotton is also an example of a very old natural fiber. The time
when man began to cultivate cotton for textile purposes is still uncertain. In India, traces of this
woven fiber can be found dating back to 3200 BC, as well as signs of remote cotton plantations
(Pezzolo, 2019).

In Brazil, different types of fibers can be cited, which have distinctions in their mechanical,
chemical and physical properties.

Natural fibers such as cotton, sisal, jute, hemp, or linen are renewable in nature, cheaper, and
have a lower environmental impact, since they are biodegradable. Replacing parts reinforced
with synthetic fibers with those reinforced with natural fibers is highly recommended, as it
reduces the possible environmental impacts inherent to synthetic materials (Romão, 2003).

Some benefits that can be observed with its use include low thermal conductivity, high electrical
resistance and the ability to increase diffusion, making it suitable as an acoustic material. In
addition, the lower weight of composites reinforced with natural fibers improves fuel efficiency.
Compared to other synthetic fibers, it has a low specific density and offers a good cost-benefit
ratio (Schelb, 2016).

9
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However, there are also possible limitations arising from the use of natural fibers as reinforce-
ment of polymeric materials, such as low temperature resistance, high hydrophilic affinity and
lack of interface between the fibers and the matrices. The biggest problem related to natural
fibers is due to the hydrophilic groups present in their chemical structure. These groups give
natural fibers a polar property, while olefinic polymers are nonpolar.

Classification of Natural Fibers of Plant Origin.

Natural fibers are subdivided according to their origin: vegetable, animal or mineral. Due to
their properties, fibers of vegetable origin have greater potential in engineering, as can be seen
in Figure 2.3.

Figura 2.3: Diagram of the classifications of natural fibers of plant origin.

A

ASeed AFruit AA Sheet

ACotton ACoconut A

Stem

A

Jute
Linen
Hemp
Rami
Kenaf

Natural Fibers of Plant 
Origin

Sisal
Abaca

Source: Adapted from Faruk, Bledzki, Fink, and Sain (2012).

For example, fibers of animal origin have lower resistance and greater elongation in relation to
vegetable fibers, while mineral fibers have a higher purchasing value, are more brittle and lack
resistance and flexibility (Castro, 2013).

Structure and Constituents of Natural Fibers of Plant Origin.

Their characteristics depend on the properties of the individual constituents, the fibrillar struc-
ture and the lamellar matrix. The fiber is composed of numerous elongated spindle-shaped
fiber cells that taper towards each end. Therefore, all plant fibers are hydrophilic in nature;
their moisture content reaches 8-13% (Castro, 2013).
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Natural fibers of plant origin contain different natural substances. The most important of these
is lignin. The distinct cells of hard plant fibers are joined together by lignin, which acts as a
cementing material. The lignin content of plant fibers influences their structure, properties, and
morphology (Araújo, 2019).

Considered as naturally occurring composites, they are composed mainly of cellulose fibrils
embedded in a lignin matrix. These cellulose fibrils are aligned along the length of the fiber.
It appears that this alignment provides maximum tensile and flexural strength, in addition to
providing rigidity in this direction of the fiber, as can be seen in Figure 2.4 (Nascimento, Silva,
Dias, Gomes, & Fujiyama, 2019).

Figura 2.4: Structural constitution of a vegetable fiber.
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Primary Wall

Secondary Wall S3
Secondary Wall S2
Secondary Wall S1

Microfibers

Source: Adapted from Eichhorn, Hearle, Jaffe, and Kikutani (2009).

For each type of natural fiber, the percentage of the four main chemical constituents is presen-
ted, as can be seen in Table 2.1.

2.3 Matrix

The matrix used in the manufacture of composite materials aims to transfer mechanical loads
to the reinforcement, giving its structure ductility and cohesion. By involving the reinforcement
material, it provides flexibility to the composite, while protecting it against the influences of the
external environment (A. P. d. O. Silva, Quaresma, Motta, & Francklin, 2015).
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Tabela 2.1: Chemical constituent contents of some natural fibers of plant origin.

Origin Fibers Cellulose (%) Hemicellulose (%) Lignin (%) Pectin (%)
Seed Cotton 82-96 2-6.4 0-5 <1-7
Fruit Coconut 43-46 0.25 45-46 3-4
Stem Jute 51-84 12-20 5-13 0.2
Stem Flax 60-81 14-20.6 2.2-5 1-4
Stem Hemp 70-92 18-22 3-5 1
Stem Ramie 68-76 13-15 0.6-1 2
Stem Kenaf 44-87 22 15-19 2
Leaf Sisal 43-78 10-24 4-12 0.8-2
Leaf Abaca 61-64 21 12 0.8

Source: Mwaikambo (2006).

The most common types of matrices are: metallic, ceramic and polymeric, with polymeric
matrices being the most used in composites. They can be divided into thermoplastic and
thermoset, as can be seen in Figure 2.5.

Figura 2.5: Examples of thermoplastic and thermosetting polymer matrices.
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A
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Source: Adapted from Castro (2013).

Thermoplastics are composed of macromolecules held together by relatively weak forces, such
as Van der Waals forces. When heated, they become flexible due to the breaking of intermo-
lecular bonds, reaching a viscous liquid state above the glass transition temperature. This
temperature is defined as the average of the temperature range between the base line when
the material is rigid and the base line when it is softened, also known as the rubbery state
(Passatore, 2013).
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Thermoplastics include polyethylene, polyvinyl chloride, polystyrene, polyamide, cellulose ace-
tate, polycarbonate and polypropylene. They have the important characteristic of returning to
the solid state when cooled, which allows repeated heating and cooling cycles, and are used
in various manufacturing processes (Cavalcante, 2018).

On the other hand, thermosets, unlike thermoplastics, cannot be remelted and shaped repe-
atedly, due to the strong covalent bond between the chains. Their production occurs through
a two-stage chemical reaction. The first stage results in the formation of long-chain molecules
similar to those of thermoplastics, but still reactive (Vasconcelos, 2013).

In the second stage of the reaction, cross-links are formed between the chains formed in the
first stage, usually through the addition of curing agents and the application of heat and/or
pressure (Godoy, 2019).

2.4 Unidirectional Composite Laminates

Unidirectional composite laminates are composed of several superimposed unidirectional layers.
These materials consist of two elements: the matrix and the reinforcement, with the reinforce-
ment being formed by fibers aligned in a single direction. The complexity of the mechanical
behavior of these materials is significantly greater compared to other conventional materials.
Their main characteristic is the alignment of the reinforcement layers, which must all be ori-
ented in a single direction, generally parallel to the longitudinal load (Callister & Rethwisch,
2020).

Figura 2.6: Unidirectional laminate with the main directions indicated by axes 1, 2, and 3.
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Source: Prepared by the author (2024).

In Figure 2.6, the three main axes that determine the mechanical properties of the material are
identified. The reinforcement phase is composed of wires, whose layer thickness, minimum in
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modern composites, is about 0.1 mm, much larger than the diameter of the fibers, which is in
the range of 0.01 mm. Both the reinforcement and the matrix have their quantities specified in
terms of volume and mass fractions (Vasiliev & Morozov, 2001).

2.5 Mass and Volume Fractions of a Blade

In composite materials, the quantities of fiber and matrix are expressed in volumetric and mass
fractions, thus expressed by the equations 2.1 e 2.2:

Vf =
Vf

VC

Vm =
Vm

VC

Vv =
Vv

VC

(2.1)

In Equation 2.1 there is a ratio that predicts the value of the volumetric fraction of the blade
components, with the term V being the volume, where the subscripts f , m, v and c indicate
the values for fiber, matrix, voids and composite.

Mf =
mf

mC

Mm =
mm

mC

(2.2)

Likewise, Equation 2.2 is a ratio that relates the masses (mf ,mm) of the fiber and matrix to the
total mc of the composite material, indicating their mass fractions M . Another alternative to
obtain the mass fraction of the fiber and matrix is through the density of their components, as
can be seen in Equation 2.3 and 2.4:

Vf =

(
ρf
ρc

)
Vf (2.3)

Vm =

(
ρm
ρc

)
Vm (2.4)

2.6 Damage Mechanisms

Composite materials can present a variety of damages before breaking. To describe this da-
mage, three scales are observed: macroscale, which considers the general behavior of the
laminated composite evaluated; mesoscale, which defines the laminate and the associated
interface; and microscale, which considers the heterogeneous structure (Oliveira, 2018).

In the microstructure, which involves the fiber/matrix interaction, fiber fracture occurs, which
can result in matrix fracture, displacement between matrix and fiber, and even fiber buckling.
Mechanically, damage can lead to matrix or fiber rupture, delamination, and transverse rupture
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of the sheet or laminate, which can occur independently or due to the fiber/matrix interface 
(Neto & Pardini, 2016).

According to Oliveira (2018), the main types of damage in composites are matrix cracking, 
which is characterized by one or more cracks in the matrix of the composite material, also 
known as cohesive fracture in the matrix; fiber rupture, which involves transverse and longitu-
dinal rupture of the fiber, also called cohesive fracture in the fiber; and fiber/matrix debonding, 
which consists of displacement or detachment at the interface between fiber and matrix, called 
adhesive fracture.

Damage mechanisms can be influenced by several factors, such as the physical and chemical 
properties of the reinforcements and matrix, the composite configuration, t he manufacturing 
process, the type of loading, the microstructural characteristics and the environmental conditi-
ons (M. A. Leão, 2013).

Delamination, which occurs due to the separation of the layers due to the degradation of the 
adhesive bond, can be accelerated by factors such as humidity, causing cracks and wear in 
certain materials. This process is more common in laminated composites. Fractures and 
damage can occur under various types of loads, with microbuckling restricted to compressive 
loads (Líbano, da Costa Pereira, Bastos, de Souza Coelho, et al., 2020).

In the case of fatigue in fibrous c omposites, f our s tages a re c onsidered: l ocalized damage 
nucleation by cyclic loading, microcrack nucleation, stable crack propagation due to cyclic loa-
ding and local crack propagation, dependent on fiber orientation, matrix ductility and interface 
adhesion. Compressive stresses do not promote crack propagation, while tensile stresses are 
responsible for this phenomenon (J. F. A. Leão, 2018).

The set of structures and damage mechanisms that occur during the loading of composite 
materials is not fully understood, and there are several theories on the subject, especially when 
it comes to composites with vegetable fibers a nd t heir e ffects, s uch a s m oisture absorption 
(Recicar, 2022).

Macroscopic Analysis of the Damage Mechanism

Macroscopic analysis of damage mechanisms in materials is crucial to understanding their 
structural integrity and performance over time. There are at least two main forms of damage: 
those caused by time of use, such as wear of the material in aggressive environments, and 
those caused by the application of external loads, leading to mechanical fracture of the struc-
tural elements (Felipe, 2012).

In this macroscopic analysis, it is possible to observe specific damage characteristics i n the 
specimens in mechanical tests. These characteristics may include microcracks in the material
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matrix, fiber rupture, and even delamination, which is characterized by the separation of the
interfaces in a laminate.

Understanding these macroscopic damage mechanisms is essential to develop maintenance,
repair, and optimization strategies for materials (Oliveira, 2018).

Microscopic Analysis of Damage Mechanism

Microscopic analysis of the damage mechanism is a more detailed approach that allows inves-
tigating the fundamental causes behind material failures. While macroscopic analysis focuses
on the visible effects of failures, such as fractures and wear, microscopic analysis seeks to
understand the processes that occur in the microstructural (Felipe, 2012).

Figure 2.7 represents the cohesive fracture of synthetic glass fiber, while Figure 2.8 characte-
rizes the cohesive fracture of natural sisal fiber.

Figura 2.7: Breakage of fiberglass in polymer composite.

Fiberglass fracture. 

Source: Oliveira (2018).

Figure 2.9 illustrates the damage observed in polymer composites, providing examples that
corroborate the theory discussed in the theoretical framework on damage mechanisms in mi-
crographs.

2.7 Micromechanics Analysis of the Transverse Modulus of Elasticity

The equations of this approach were generally developed from the adjustment of curves with
experimental data, and are considered semi-empirical because the variables involved have
physical meaning. In this context, the geometry of the cross-section of the fiber analyzed
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Figura 2.8: Characteristic breakage of natural fiber in polymer composite.

Sisal fiber breakage 

Source: Oliveira (2018).

Figura 2.9: Various examples of damages.
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Source: Oliveira (2018).

must also be defined, since some properties are evaluated differently for rectangular and cir-
cular/square fibers (Kaw, 2005).
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Rule of Mixtures

Figura 2.10: First-order model of a unidirectional laminate.
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Source: Prepared by the author (2024).

In Figure 2.10, the rule of mixtures model can be seen, also called the first-order model. This
model requires the properties of the fiber and matrix, as well as the volume fraction of fibers.
The diagram of this model with the blade consisting of fiber and matrix, with the respective
stresses σ1, σ2 and σ12 (de Mendonça, 2005).

According to Vasiliev and Morozov (2001), the resulting force, which results in the product σ1a,
is distributed between the fiber and matrix strips, and the longitudinal deformation in the 1

direction is the same in these strips and in the blade as a whole. Using this modeling, it is
possible to obtain some mechanical properties of composite materials, such as the longitudi-
nal (E1) and transverse (E2) modulus of elasticity, Poisson’s ratio (ν12) and the composite’s
resistance limit in the longitudinal direction (σ∗

c,l).
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Equations 2.5, 2.6, 2.7 and 2.8 show the models, respectively:

E1 = E2Vf + E2Vf (2.5)

1

E2

=
Vf

Ef

+
Vm

Em

E2 =
EmEf

VmEf + VfEm

(2.6)

ν12 = νfVf + νmVm (2.7)

σ∗
c,l = σ∗

fVf + σ
′

m (1− Vf ) (2.8)

Another important property, also obtained by the rule of mixtures, is the ultimate longitudinal
tensile stress (Xt), which is defined by Equation 2.9:

Xt = σult,f

[
Vf

(
1− Em

Ef

)
+

Em

Ef

]
(2.9)

Halpin-Tsai model

Another model that is widely used for application in the design area is the model proposed by
Halpin and Tsai (1969). As it is a semi-empirical model, the model is based on experimental
results, using adjusted parameters, but it also has a basis in theoretical mechanics.

Equation 2.10 serves to represent the following mechanical properties: E2, G12, ν23 through the
variable P. The term Vf represents the volume fraction of fiber in the unidirectional composite
(Halpin & Tsai, 1969).

P =
Pm(1 + ζηVf )

1− ηVf

(2.10)

The term ζ is a geometric parameter that measures the level of reinforcement in the compo-
site. Typically ζ = 2 is used for the analysis of E2 and ζ = 1 for the analysis of G12, when ζ =
0 the Halpin-Tsai equation equals the equation demonstrated for the rule of mixtures (Affdl &
Kardos, 1976).
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For the calculation of E2 by Halpin-Tsai it is suggested to ζ :

ζ = 2 para fibra de seção circular,

ζ = 2a/b para fibra de seção retangular

Equation 2.11 defines the parameter η of Equation 2.10.

η =
Pf/Pm − 1

Pf/Pm + ξ
(2.11)
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CHAPTER 3

Artificial Neural Network

According to Haykin (2001), a neural network can be defined as a massively distributed parallel
processor, consisting of simple processing units, with a natural propensity to store experimental
knowledge and make it available for use. Therefore, a ANN resembles the brain in two aspects:
the first in which the knowledge acquired by the network through a learning process, and
the second in which the connections between neurons (synaptic weights) are used to store
learning.

The NN acquires knowledge through a learning process similar to what the human brain learns
from experiences and incoming information, a ANN can also learn from training data. Through
learning algorithms, the network is exposed to examples and patterns, adjusting the synaptic
weights of connections between neurons to capture and represent the acquired knowledge
(Haykin, 2001).

The connections between neurons, represented by synaptic weights, are used to store lear-
ning. Just as synapses in the human brain strengthen or weaken based on experience and
learning, the connections between neurons in a ANN are adjusted to reflect knowledge gai-
ned during training. These synaptic weights encode the relationships and patterns learned by
the network, allowing it to generalize and make decisions based on the available information
(Freire Jr & Aquino, 2005).

In this way, a ANN resembles the brain both in the learning process and in the storage of kno-
wledge through synaptic connections between neurons. This similarity makes ANN a powerful
tool for complex data processing tasks, such as classification, pattern recognition and decision
making.
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3.1 Biological Neurons

This type of cell is mainly found in the cerebral cortex of animals, as in the human brain. It con-
sists of a cell body that contains the nucleus and most of the cell’s complex components, along
with several branched extensions called dendrites, as can be seen in Figure 3.1 (M. Câmara,
2014).

Figura 3.1: Neurônio Biológico.
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Fonte: Géron (2019).

Additionally, there is a very long extension called the axon, which may be just a few times
longer than the cell body or even tens of thousands of times longer (Shepherd, 2003).

According to Shepherd (2003), near its end, the axon divides into many branches called telo-
dendrons, and at the tips of these branches are tiny structures known as synaptic terminals, or
simply synapses, which connect to the dendrites of other neurons (or directly to the cell body).

Biological neurons receive brief electrical impulses from other neurons through these synap-
ses, called signals. When a neuron receives a sufficient number of signals from other neurons
in a short space of time, it fires its own (M. Câmara, 2014) signals.
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3.2 ANN neurons

Figura 3.2: Model of a Neuron.
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The fundamental cell of an artificial neural network is called a neuron, as is the case in brain
neural networks. Figure 3.2 illustrates the components present within a neuron. In it, we
can identify synapses, a linear combination component and an activating function (Freire Jr &
Aquino, 2005).

In the artificial neural network, synapses are represented by the product of the input signals
(xn) by the corresponding weights (xnm). The linear combiner performs the linear combination
of synapses together with an additional element called bias (bn), which has a specific weight.
The use of bias allows more precise control of the value that will be provided to the (Júnior et
al., 2005) activation function.

The activation function can adopt different forms and its main purpose is to restrict the neuron’s
output amplitude to a finite value. Generally, output values are limited to a specific range, such
as -1 to 1 or 0 to 1. The input of the activation function corresponds to the output of the linear
combiner.
The model in Figure 3.2 can be expressed by the equations 3.1 and 3.2.

vn =
M∑

m=0

wnmxm + bnwbn (3.1)

yn = φ (vn) (3.2)

The term (vn) represents the result of the sum of the linear combination of input synapses,
together with the bias (bn) multiplied by its weight (wbn). The neuron’s activation function is
represented by φ, where y is the output of the nth neuron in the network, and M is the number
of input signals.

23



ARTIFICIAL NEURAL NETWORK

The artificial neural network can use different types of activation functions. Among them, the
sigmoid function, the hyperbolic tangent function, the threshold function and the piecewise th-
reshold function stand out. In artificial neural network applications, the sigmoid and hyperbolic
tangent functions are the most commonly used.

Figura 3.3: Sigmoid Function.
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Source: Prepared by the author (2024).

The sigmoid function is defined by Equation 3.3 and its behavior is described by Figure ??,
with variation in the values of (a).

φ(x) =
1

1 + e−ax
(3.3)

The hyperbolic tangent function is defined by Equation 3.4 and its behavior is described by
Figure 3.4, and the parameters (b) and (c) are constants that control the amplitude and slope
of the curve.

Figura 3.4: Hyperbolic Tangent Function.
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Source: Prepared by the author (2024).
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φ(x) = b tanh(cx) (3.4)

3.3 Types of Neural Network Architecture

In the literature, there is a wide variety of neural network architectures that are applied in
different types of cases. However, in this work, only the use of Multilayer Perceptron Networks
will be discussed. Figure 3.5 demonstrates the type of architecture used in this research.

Figura 3.5: Multilayer perceptron network.
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Perceptron de Múltiplas Camadas

A neural network Multilayer Perceptron (MLP) consists of an input layer, one or more hidden
layers, and an output layer. Each layer is composed of neurons with multiple inputs and a single
output. Each input is multiplied by an associated weight, and each output is passed through
an activation function. The input signals from the neurons are propagated through the network
(Haykin, 2001).

Multilayer perceptron networks have been widely used in engineering, including materials en-
gineering. These networks have the ability to learn about a problem through training and
generalize to cases not presented to the network, which makes them highly valued.

However, a disadvantage of Perceptron networks is that their operation is considered a “black
box”. This is due to their distributed non-linearity and the high connectivity between neurons,
making theoretical analysis of their internal functioning difficult (Haykin, 2001).

As mentioned earlier, each neuron has a specific activation function, and an important charac-
teristic is the smoothness of the sigmoid and hyperbolic tangent functions. This smoothness
facilitates the calculation of their derivatives, which plays a fundamental role in the development
of training algorithms for this type of architecture.

Another advantage of the sigmoid and hyperbolic tangent functions is that their derivatives are
related to the primary functions themselves. This significantly simplifies the training process,
reducing the number of calculations required and, consequently, decreasing the processing
time during training (Haykin, 2001).

The derivative obtained from the sigmoid function is seen in Equation 3.5.

dφ(x)

dx
=

ae−ax

(1 + e−ax)2
= aφ(x)(1− φ(x)) (3.5)

3.4 Training a Neural Network

The characteristic that is of crucial importance for a neural network is its ability to learn, through
pre-established rules and the improvement of its performance through this learning process.

The type of learning is determined by the way in which the modification of the parameters
occurs. The central objective of training a neural network is to perform a gradual modification
of its synaptic weights, following a learning rule that determines how these weights will be
changed.

To enable learning, it is necessary to have a set of training data; during training, each time this
set is presented to the network, a learning epoch occurs (Haykin, 2001).
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The training algorithm is a pre-established set of well-defined rules to solve a learning problem.
There are several types of training algorithms, which can be classified as supervised, semi-
supervised and unsupervised. In this work, we will focus our attention only on supervised
training.

Supervised Training

Supervised training aims to enable the ANN to respond approximately to the data set presented
to it; in addition, it aims for the ANN to have the ability to generalize and generate approximate
results for data not used in training.

Figure 3.6 illustrates a schematic of supervised training; in it, the synaptic weight matrix “w” is
updated so that the ANN can model itself to the data presented in training. These changes in
the “w” matrix are intended to reduce the error between the desired values ( “d”) and the output
values (“z”).

Figura 3.6: Diagrama esquemático demonstrando o processo de aprendizado de uma rede
neural, aonde (a) é o método de treinamento da RNA e (b) é o modelo obtido pelo treinamento
da RNA.
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Figura 3.4. Diagrama esquemático demonstrando o processo de aprendizado de uma rede neural, onde (a) é 
método de treinamento da RNA e (b) é modelo obtido pelo treinamento da RNA. 
Fonte: Silva et al., 2001. 

A forma como se dá o aprendizado, representado na Figura 3.4, também pode ser 

chamada de aprendizagem por correção de erro. Na qual, há uma tentativa de minimizar o 

erro médio, por parte do algoritmo de treinamento, gerado entre a saída (z) da RNA e a 

resposta desejada (d

minimização é feita até a obtenção de um valor mínimo de erro, que pode ser um mínimo 

global ou um mínimo local. A partir do uso de um algoritmo de treinamento projetado para 

minimizar o erro, um conjunto de treinamento adequado e um número de iterações suficiente 

para realizar o treinamento pode-se obter uma rede que seja capaz de realizar tarefas como a 

classificação de padrões e a aproximação de funções (Haykin, 2002). 

Conforme foi dito anteriormente, a escolha do algoritmo de treinamento é de grande 

importância, pois a mesma é a responsável por gerar uma RNA que aproxime adequadamente 

uma função. Pensando desse modo, houve a criação de vários algoritmos na literatura 

especializada com o intuito de possuir qualidades como, evitar a descida para mínimos locais, 

rapidez no aprendizado e boa generalização. Dentre eles pode-se destacar algoritmos como o 

RPROP (Riedmiller et al., 1993), o QuikProp (Fahlman et al., 1988) e o mais popular dentre 

todos eles o algoritmo de Retropropagação (Back-Propagation) (Rumelhart et al., 1986 apud 

Fonte: SILVA (2001).

As mentioned earlier, there are several types of training algorithms, including Resilient Back-
propagation (RPROP) (Riedmiller & Braun, 1993), Quickprop (Fahlman et al., 1988) and the
most widely known, Backpropagation (Møller, 1993).

Each of these algorithms has its own particularities and is requested according to the specific
application, choosing the one that best fits the characteristics of the problem in question.
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Networks employing the RPROP algorithm differ from classical Backpropagation networks in
that at each iteration with a specific sample size, the weights are updated in the most likely
direction (Riedmiller & Braun, 1993). RPROP determines the step size for each iteration of
individual weights based on the agreement or disagreement of the sign of the partial derivative
with respect to the previous step. Its main advantage is the ability to adapt its learning rates to
the error topology (Costa et al., 2021).

Backpropagation Algorithm

The Backpropagation algorithm requires some architectural characteristics, of which we can
mention: the nonlinear activation function must have a derivative at all points, the ANN must
have one or more layers of hidden neurons, and the ANN must have a high degree of con-
nectivity. Once these characteristics are approved, the objective of the training is to reduce as
much as possible the MSE, also called the cost function, which is presented in Equation 3.6.

MSE =
1

2Q

Q∑

1

P1∑

p1=1

(dp1 − zp1)
2 (3.6)

In order to minimize MSE, it is necessary to modify the synaptic weights and this is done
by implementing the training algorithm with forward propagation and back propagation.

δ
(L+1)
i corresponds to the errors that are propagated back from layer (l + 1) to layer (l), as

can be seen in Figure 3.7.

Figura 3.7: Backpropagation in deep networks.
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Fonte: Adaptado de Freire Jr and Aquino (2005).

These computational steps can be interpreted as signals. The functional signal travels through
the network, and the error signal is provided by the training algorithm, thus modifying the
internal structure of the network (synaptic weights).
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The modification of the synaptic weights, through the error signal, is carried out following the
rules that are obtained through the derivation of the cost function in relation to the variation
given to the synaptic weights.

Figura 3.8: T-layer Perceptron Network.
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Source: Freire Jr and Aquino (2005).

In Figure 3.8, the indices l, m and n represent the neurons of a network that propagates from
left to right, such that l is the neuron that is in a layer to the left of neuron m (layer before
neuron m) and neuron n is in a layer to the right of this same neuron (layer after neuron).

From the rules obtained and considering a multilayer Perceptron network with “T ” layers (as
shown in Figure 3.8) the training of the network can be divided into 5 stages.

1. Start: Initially, the values of the synaptic weights must be chosen randomly, so that the
mean of their values is zero and the variance is close to the saturation of the activation
function used (the activation function used can be sigmoid or hyperbolic tangent).

2. Presentation of training data: An epoch of training examples is presented to the network.
For each example presented, the sequences described in items 3 and 4 are performed,
in which the functional signal and the error signal are emitted.

3. Forward propagation (functional signal): Forward propagation (functional signal). Sup-
pose a training example is represented by (x(q), d(q)), where x(q) is the q-th input signal
(vector) applied to the input layer of the network and d(q) is the vector that the network is
expected to present at its output after training (desired response) for the input x(q) (see
Figure 3.6). Then, the linear combiners vm

(t)(q) and the functional signals ym
(t)(q) are

obtained, in which the notations m and t represent the m-th neuron in the t-th layer of
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the ANN. The equations 3.7 and 3.8 represent, respectively, the linear combiner and the
functional signal.

v(t)m (q) =
L∑

l=0

w
(t)
ml(q)y

(t−1)
l (q) (3.7)

y(t)m = φm (vm (qm)) (3.8)

In these equations, L represents the total number of input signals coming from the pre-
vious layer t − 1 in the m-th neuron of layer t, yl

(t−1) represents the functional signal
obtained from the l-th output signal of the layer previous to t, ym(t) is the output signal of
the m-th neuron of layer t and ϕ(.) is the activation function of the network which can be
the sigmoid function (Equation 3.3) or the hyperbolic tangent (Equation 3.7).

If neuron m is in the first hidden layer (t = 1), use Equation (3.9) in (3.7).

y(0)m = xm(q) (3.9)

When neuron m is in the output layer (t = T ), use Equation (3.10) to obtain the network’s
output signal.

zm(q) = y(T )
m (3.10)

With the network output signal zm(q) and the desired response dm(q) for the m-th output
neuron, calculate the error signal in (q), according to Equation 3.11.

em = dm(q)− zm(q) (3.11)

4. Backpropagation (error signal): Calculate the local gradients of the network δ (Equation
3.12).

δ(t)m (q) =




e(T )
m (q)φ′

m

(
v(T )
m (q)

)
Neuron m in the output layer (T )

φ′
m

(
v(t)m (q)

)∑

n

δ(t+1)
n (q)w(t+1)

nm (q) Neuron m in the hidden layer (t)

(3.12)
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In the equation above, ϕ′
m(.) is the derivative of the activation function of the m-th neuron

of layer t, for the case of the sigmoid function the derivative can be seen in Equation 3.5.
With the values of the local gradients, modify the synaptic weights using Equation 3.13.

w
(t)
ml(q + 1) = w

(t)
ml(q) + α

[
w

(t)
ml(q)− w

(t)
ml(q − 1)

]
+ ηδ(t)m (q)y

(t−1)
l (q) (3.13)

In Equation 3.13, η and α are the learning rate and the momentum constant, respectively.
Both the learning rate and the momentum constant are values chosen by the programmer
and, preferably, should be between 0 and 1. These values may or may not vary during the
training of the network, aiming to reduce the number of iterations and improve the result
obtained by it.

5. Iteration: Presentation of the training data must be done several times, the number of
iterations, that is, the number of times the training set must be presented, will depend on
the stopping criterion chosen by the user.
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CHAPTER 4

Modeling

Three architectures were developed, all three based on a multilayer perceptron network, trained
by the Backpropagation algorithm. In Figure 4.1, the mental map of the architecture related to
the neural network can be seen.

Figura 4.1: Mind map of the ANN architecture.
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Of the three architectures mentioned, two are composed exclusively of neural networks. One
of these architectures has two inputs, while the other has three inputs. The third architecture is
a hybrid approach, as illustrated in Figure 4.2, which uses a three-input ANN only to improve
the results obtained by the equations of the model used.
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Figura 4.2: Mind map of the Hybrid ANN architecture.
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Specifically, the Halpin-Tsai model was employed in the hybrid algorithm, and the “pure” Halpin-
Tsai model was also used to serve as a comparison element for the previously proposed mo-
dels.

The training of the three algorithms employed K-Fold cross-validation to evaluate performance
during training. The data sets were divided into a training set (70% of the data set) and a test
set (30% of the data set) in order to develop a network with good generalization capacity. All
ANN architectures used two hidden layers with the number of neurons varying between 10 and
50 to verify which internal configuration would present the best results in this range. All neurons
were biased and used the sigmoid activation function, except for the output neuron, which used
the linear activation function. The training algorithm employed was backpropagation, based on
the rule of moment (Haykin, 2001).

The two-input, three-input and hybrid models were trained for a maximum of 5000 epochs,
using a learning rate of 0.005 and a momentum constant of 0.7 in all stages. It is important to
highlight that both input neurons and output neurons had their data normalized to improve the
learning of the ANN.
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The correlation coefficient (r) and the MSE were analyzed. The study of these points, both for
the ANN and for the Halpin-Tsai criterion, allowed the comparison between both and contribu-
ted to the validation of the ANN.

Below is Equation 4.1 from MSE, where E2real is the “real” value of the transverse elastic mo-
dulus, coming from the experimental values, and E2rna is the value calculated by ANN and the
Halpin-Tsai equations. The term (n) is the amount of data used.

MSE =
1

2n

∑
(Ereal − Eann)

2 (4.1)

4.1 Data Preprocessing

Data preprocessing is a crucial step in many data science and machine learning applications,
including ANN modeling. It involves a series of techniques designed to prepare the raw data
for modeling, ensuring that it is in a format suitable for use by machine learning algorithms
(Paixão, Penido, Cury, & Mendes, 2022).

Data Obtained from the Literature

To determine the transverse modulus of elasticity, the following mechanical parameters of the
unidirectional composites were required: fiber modulus of elasticity (Ef ), matrix modulus of
elasticity (Em) and fiber volume fraction (Vf ). The search for these data involved consulting sci-
entific articles, books and technical reports (Agropecuária & GrandelPB, 2009; Castro, 2013;
de Castro & Grattapaglia, 2014; Ishizaki, Visconte, Furtado, Leite, & Leblanc, 2006; Kumare-
san, Sathish, Karthi, et al., 2015; Lemos & Martins, 2014; Martin, Martins, Mattoso, & Silva,
2009; Martins, Iozzi, Martins, Mattoso, & Ferreira, 2004; Monteiro, Rodriguez, Lopes, & Sores,
2013; Pinto, A Júnior, Carvalho, et al., 2005; Prasad, Gowda, & Velmurugan, 2017; S. O. Silva,
2021; T. L. S. Silva, de Oliveira Filho, & do Nascimento Silva., 2024).

In the ANN training process, data from 74 unidirectional composites were initially collected to
form the initial data set. However, to increase the representativeness of the data set, an inter-
polation was performed, expanding the number of composites to 300. With this new expanded
set, the distribution between training and testing data now has 210 composites intended for
training and 90 for testing.

These composites covered a variety of materials for the fiber and matrix, as well as different
fiber percentages, ranging from 20% to 70%. It is important to emphasize that, for the determi-
nation of the transverse modulus of elasticity, only unidirectional sheets were used in the entire
data set.
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The fibers used in the manufacture of the unidirectional sheets were made of various types
of materials, including sisal fiber (agave sisalana), jute, and coconut. The matrices evaluated
were: polyester, epoxide, polypropylene, and polyurethane.

Tables 4.1, 4.2, and 4.3 present, respectively, the values of the transverse elasticity moduli of
the fiber, the matrix, and the unidirectional composites used during the study.

Tabela 4.1: Values collected from the literature for the transverse modulus of elasticity for fibers.

Fibers Fiber Modulus (GPa)
Sisal 3.62 – 9.17
Jute 10.19 – 11.04
Coconut 1.54 – 2.50

Source: Prepared by the author (2024).

Tabela 4.2: Values collected from the literature for the transverse modulus of elasticity for
matrix.

Matrix Matrix Modulus (GPa)
Polyester 2.06 – 4.41
Epoxy 2.3 – 4.6
Polypropylene 1.14 – 1.55
Polyurethane 1.1 – 3.6

Source: Prepared by the author (2024).

Tabela 4.3: Values of the transverse modulus of elasticity for unidirectional composites.

Composite Transverse Modulus (GPa)
Sisal/Epoxy 6.33 – 13.44
Sisal/Polyester 6.11 – 13.21
Sisal/Polyurethane 1.78 – 6.14
Jute/Epoxy 6.53 – 14.90
Jute/Polyester 6.30 – 14.71
Jute/Polypropylene 2.12 – 7.30
Coconut/Epoxy 4.53 – 5.56
Coconut/Polyester 4.65 – 5.41
Coconut/Polyurethane 1.31 – 2.56

Source: Prepared by the author (2024).

Data Interpolation

A fundamental aspect of the data preparation process for analysis was the application of linear
interpolation. Initially, the dataset consisted of 74 unidirectional composites. Recognizing the
need to increase the representativeness of the dataset, it was decided to perform linear inter-
polation. This technique allowed expanding the dataset to a total of 300 composites (S. Silva
et al., 2020).
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This expansion was essential to ensure a more comprehensive and representative distribution
of data, which is essential for training neural network models (Dantas et al., 2020).

Data Normalization

Normalization is a fundamental technique in many areas of data science and machine learning,
and is essential for preparing data before applying training algorithms or statistical analysis
(Lima, 2021).

Among the various normalization approaches, Min-Max normalization stands out as one of the
simplest and most widely used, allowing a more consistent comparison between different data
sets or variables. It is important to highlight that, since the volumetric fraction varies from 0 to
1, there was no need to normalize this input parameter (Lopes, 2024).

The original value E2 is adjusted to E2nor so that it is in the scale between E2min and E2max.

E2nor =
E2 − E2min

E2max − E2min
(4.2)

where:

E2nor is the normalized value,

E2 is the original value of the transverse modulus of elasticity,

E2min is the minimum value in the data set,

E2max is the maximum value in the data set.

The original value Ef is adjusted to Efnor so that it is on the scale between Efmin and Efmax.

Ef nor =
Ef − Efmin

Efmax − Efmin

(4.3)

where:

Ef nor is the normalized value,

Ef is the original value of the fiber modulus of elasticity,

Efmin is the minimum value in the data set,

Efmax is the maximum value in the data set.
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The original value Em is adjusted to Emnor so that it is on the scale between Emmin and Emmax.

Emnor =
Em − Emmin

Emmax − Emmin
(4.4)

where:

Emnor is the normalized value,

Em is the original value of the matrix modulus of elasticity,

Emmin is the minimum value in the data set,

Emmax is the maximum value in the data set.

Resampling methods

Resampling methods are indispensable tools in modern statistics. The techniques involve
partitioning the training data and refitting the competing models for each subsample in order
to obtain additional information about the model fit, something that would not be possible with
the full data (Ferreira, 2018).

Figura 4.3: Erro de predição por complexidade do modelo.
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Fonte: Adaptado de Ferreira (2018).
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For example, through resampling methods, we can estimate the test error associated with a
given model and perform model selection with the appropriate level of flexibility (Ferreira, 2018).

This translates into training the algorithm with a training sample represented by the blue curve
in Figure 4.3 and evaluating the goodness of fit with a validation sample, indicated by the red
curve. It is important to note that using very simple algorithms will result in a high prediction
error in the training sample, represented by the blue curve, while increasing model complexity
tends to reduce this training error.

However, this apparent improvement is accompanied by a decrease in generalization capa-
city, that is, the model’s performance when dealing with new examples, such as the validation
sample, may be unsatisfactory.

Given this issue, the challenge lies in finding a balance between a simple model, which may
be underfit, and a complex model, which may be overfit, so that error is minimized when new
data is introduced.

K-Fold Cross-Validation

Separating the data into only two disjoint parts can yield divergent results, depending on the in-
formation contained in each set, especially when the data is scarce. The k-fold cross-validation
approach minimizes these problems (Leal, 2019).

The method consists of dividing the data into K equal parts, adjusting the model using K-1
parts, and the remaining portion is destined for validation. This process is repeated K times, at
each moment a different partition will be the validation; then, the results are combined, obtai-
ning the average of the errors obtained (Cunha, 2019).

Definition:

• Let K parts denoted by C1, C2, . . . , CK , where Ck represents the index of the k-th part.

• Assume that we have nk observations in partition k (if n is a multiple of K, then nk =
n

K
).

• Calculate:

CV(K) =
K∑

k=1

nk

n
MSEk, (4.5)

where MSEk =

∑
i∈Ck

(yi − ŷi)
2

nk

, and ŷi is the adjusted value of observation i, obtai-

ned from the data with the k-th part removed. The k-fold cross-validation approach is
represented in Figure 4.4.
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Figura 4.4: Validação cruzada por k-fold.
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Ē =
1

k

k∑

i=1

Ei (4.6)

where:

Ē represents the average metric across all folds.

k is the total number of folds in k-fold cross-validation.

Ei is the performance metric in the i-th fold.

This Equation 4.6 computes the average of the performance metric (E) over all folds in a k-fold
cross-validation, where Ei is the performance metric on the i -th fold. The sum is taken over
all folds from 1 to k, and the result is then divided by the total number of folds k to obtain the
average.
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4.2 Two-Input ANN Model

The ANN architecture represented in Figure 4.5 is provided by two input neurons and one
output neuron.

Figura 4.5: Neural network architecture with two inputs.
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Therefore, an input neuron that represents the ratio of the fiber’s modulus of elasticity to the
matrix’s modulus of elasticity, an input neuron that represents the fiber volume, and an output
neuron represented by the ratio of the transverse modulus of elasticity to the matrix’s modulus
of elasticity.

Equation 4.7 aims to model with the ANN, where,
Ef

Em

is the ratio of the fiber’s modulus of elas-

ticity to the matrix’s modulus of elasticity,
E2

Em

represents the ratio of the transverse modulus of

elasticity to the matrix’s modulus of elasticity, and Vf is the fiber volume.

E2

Em

= f

(
Ef

Em

, Vf

)
(4.7)

In this specific type of architecture, its main function is to simplify the data used, reducing the
number of synaptic weights in the network. In Figure 4.6, the training architecture of the ANN
with two inputs can be seen.
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Figura 4.6: Training architecture for ANN with two inputs.
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4.3 Three-Input ANN Model

The ANN architecture represented in Figure 4.7 consists of three input neurons and one output
neuron.

Figura 4.7: Neural network architecture with three inputs.
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Therefore, an input neuron representing the fiber’s modulus of elasticity, an input neuron repre-
senting the fiber volume, an input neuron representing the matrix’s modulus of elasticity, and
an output neuron representing the transverse modulus of elasticity.

Equation 4.8 has the function that aims to model the three-input architecture. Therefore, E2 is
the transverse modulus of elasticity, Ef is the fiber’s modulus of elasticity, Em is the matrix’s
modulus of elasticity, and Vf is the fiber volume.

E2 = f (Ef , Em, Vf ) (4.8)

In Figure 4.8, the training architecture of this ANN is shown, changing the data types that will
serve as comparison for the operation of the backpropagation algorithm, represented by ∆W

the update of the synaptic weights, coming from the training algorithm.

Figura 4.8: Arquitetura de treinamento para RNA três entradas.
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4.4 Three-Input Hybrid RNA Model

The hybrid model has a structure formed by a ANN and a semi-empirical calculation model,
using the Halpin-Tsai model. Its application will have the function of approximating the analy-
tical model of the result of (E2real) to the values obtained experimentally, taken from the litera-
ture.
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For this example, the output of ANN is the error (ed), which is given by the difference between
the experimentally obtained transverse elastic moduli (E2real) values and the transverse elastic
moduli values obtained from the Halpin-Tsai equations (E2estimado).

ed = E2 real − E2 estimado (4.9)

In Figure 4.9, the value of ∆W represents the update of the synaptic weights, coming from the
training algorithm. There is an analytical approximation to obtain the value of E2, however, in
order to improve the results, a ANN is used.

Figura 4.9: Training architecture and flowchart of the three-input neural network with Halphin-
Tsai.
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CHAPTER 5

Results

In this section, the main results of the Artificial Neural Network (ANN) training for the analysis
of the mechanical property E2 will be shown, together with its proposed two- and three-input
models, in addition to the hybrid model. A comparison will also be made to validate the ANN
related to the transverse modulus of elasticity (E2), and the theoretical model (Halpin-Tsai).
To provide a starting point for the analysis, the results obtained by the Halpin-Tsai model are
compared to the experimental data. The MSE obtained between the experimental data and
the Halpin-Tsai model was 0.006574, while the correlation coefficient was 0.9131.

5.1 Two-Input ANN

Using cross-validation, the MSE of the ANN was initially evaluated in relation to the network’s
training epochs. In the case of a two-input architecture, it was found that, despite the lower
MSE values obtained for the test data set, the values for the training data set remained high, as
illustrated in Figure 5.1, reaching approximately 0.006986, higher than the Halpin-Tsai model,
which reached 0.006574. Furthermore, it is observed that at the beginning of training there
is no significant reduction in the MSE of the training set, which will probably result in a ANN
unable to generalize and model the data satisfactorily.

In Figure 5.2, a comparative analysis was performed focusing on the E2 values generated by
ANN. The training and test data were analyzed in a value graph, where it is noticeable that
the closer these values are to the red line, the greater the linearity between the ANN and
experimental values. The values were well distributed for low values, while for higher values,
ANN found values lower than the experimental ones. In this model, it is observed that the test
data had values far from the comparative line.
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Figura 5.1: Mean Squared Error (MSE) Analysis by the Number of Training Epochs for the
Two-Input Neural Network.
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Figura 5.2: Comparative Graph of the Two-Input Neural Network.
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5.2 Three-Input ANN

As done in the previous architecture, cross-validation was again used as the stopping criterion
for this ANN. In other words, a test set was used to choose the synaptic weights of the ANN.
Analyzing the mean square error curve as a function of the number of training epochs for
the best result obtained, which was with 48 neurons in the hidden layer, as shown in Figure
5.3, it can be seen that there is a tracking of the two curves in the same order of magnitude.
This behavior did not occur in the two-input ANN, where a significant difference was observed
between the data. This fact may serve as an indication that the three-input ANN is managing
to generalize the micromechanical behavior better than the two-input ANN.

In Figure 5.4, a comparative analysis similar to that done with the two-input ANN was perfor-
med, focusing on the E2 values generated by the ANN. The values showed a good distribution
for the low values, while, for higher values, there was an improvement in relation to the two-
input ANN, especially in the lower values of the experimental data. In this model, it is observed
that the test data showed an improvement in comparison with the two-input ANN, considering
the comparative line.

Figura 5.3: Mean Squared Error (MSE) Analysis by the Number of Training Epochs for the
Three-Input Neural Network.
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Figura 5.4: Comparative Graph of the Three-Input Neural Network.
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5.3 Three-Input ANN Hybrid Model.

The hybrid modeling used here combines a theoretical Halpin-Tsai model with a ANN to ade-
quately adjust the experimental data. In any case, as in the two previous architectures, cross-
validation was used as a stopping criterion, seeking to obtain the most appropriate response
to the experimental data.

Thinking in this way, the architecture that presented the best results has 24 neurons in the
hidden layer. As can be seen in Figure 5.5, which shows the mean square error values for the
training and test sets, this result was observed in the three-input ANN, which also presented
satisfactory results and was not observed in the two-input ANN, whose results proved to be
unreliable. With this result, it can be seen that the mixed model may also have the ability to
generalize the micromechanical behavior of unidirectional blades.

The Hybrid model is based on the values of the semi-empirical Halpin-Tsai equations to, to-
gether with a ANN, perform an adjustment on these equations in order to bring their results
closer to the experimental values. In this model, a greater proximity of the values of the mixed
ANN to the real values is observed, mainly in the training data, when compared to the other
models. In Figure 5.6, it is also observed that the values were closer to the comparative line.
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Figura 5.5: Mean Squared Error (MSE) Analysis by the Number of Training Epochs for the
Hybrid Model Neural Network.
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Figura 5.6: Comparative Graph of the Hybrid Model Neural Network.
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5.4 Comparative Analysis

Using table 5.1, it is possible to perform a comparative analysis of all the models described in
the previous items. The three-input ANN model and the mixed model achieved the best results,
while the two-input ANN model obtained unsatisfactory results and worse than the Halpin-Tsai
model. It can also be observed that the MSE of the mixed model is lower than that of all the
other models, with a value approximately 36.6% lower than that of the three-input model. The
difference between these results is best exemplified in Figure 5.7, which shows a bar graph
with the mean square error values. It should be noted that the training of these models was
done under the same conditions and these values were taken from the training sessions that
obtained the best results in relation to the number of neurons and training epochs.

Tabela 5.1: Comparison of the ANN models with the Halpin-Tsai model.

Model MSE r Training Epochs Number of Neurons
(Hidden Layer)

ANN with two inputs 0.006986 0.9025 5000 12
ANN with three inputs 0.006172 0.9358 5000 48
Hybrid ANN with three inputs 0.003913 0.9582 5000 24
Halpin-Tsai 0.006574 0.9131 - - - - - - - -

Source: Prepared by the author (2024).

Figura 5.7: Bar Chart for MSE Analysis
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CHAPTER 6

Conclusion

After analyzing the results obtained, we conclude that the use of a hybrid model (RNA/Halpin-
Tsai) produces results that enable its use in the field of composite materials. This model has
proven useful in the development and testing of transverse elasticity moduli of new composi-
tes, since the parameters used provided superior results to those obtained by the Halpin-Tsai
models and other ANN alone.

The ANN with two inputs did not meet expectations, failing to adequately model the transverse
elasticity modulus and, therefore, is not reliable for use. This unsatisfactory performance can
be attributed to the simplicity of the architecture, which does not correspond to the desired
behavior. The MSE obtained for the test data set of the two-input ANN was approximately
0.006986, higher than the Halpin-Tsai model, which achieved 0.006574, indicating inferior per-
formance. Furthermore, at the beginning of the training there was no significant reduction in
the MSE of the training set, which probably results in a ANN incapable of generalizing and
modeling the data satisfactorily.

The ANN with three inputs presented more satisfactory results in the qualitative and quanti-
tative analyses compared to the Halpin-Tsai model. Analyzing the mean square error curve
as a function of the number of training epochs, it was observed that there was a follow-up
of the two curves in the same order of magnitude, suggesting a better generalization of the
micromechanical behavior.

The three-input ANN achieved significantly better results than the two-input ANN, with a better
distribution of the generated E2 values and a greater approximation of the experimental values.
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CONCLUSION

In the comparative analysis of the E2 values generated by the three-input ANN, the values
showed a good distribution for the low values and, for higher values, there was an improvement
in relation to the two-input ANN, especially in the lower values of the experimental data.

A crucial difference between these two types of modeling is that the hybrid model generalizes
better, since it is based on both the ANN and the data from the Halpin Tsai model. The com-
bination of the values from the semi-empirical Halpin-Tsai equations with the ANN allowed a
closer approximation of the experimental results, especially in the training data. The MSE of the
hybrid model was approximately 36.6% lower than that of the three-input ANN, demonstrating
its superiority.

In the comparative analysis of the E2 values generated by the hybrid model, a greater proximity
to the real values is observed, especially in the training data, when compared to the other
models. In contrast, the ANN with three inputs, because it depends only on the training of the
algorithm, requires a significant amount of data to obtain and present good results.

Therefore, the adoption of the hybrid model is recommended for the analysis of the transverse
modulus of elasticity in composite materials, offering a more robust and accurate approach,
especially in contexts where the available data are not sufficiently extensive.
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